Treatment effect estimation in high-dimension: An inference-based approach
1 : Aix-Marseille Sciences Economiques
(AMSE)
* : Corresponding author
École des Hautes Études en Sciences Sociales, Aix Marseille Université, Ecole Centrale de Marseille, Centre National de la Recherche Scientifique, École des Hautes Études en Sciences Sociales : UMR7316, Aix Marseille Université : UMR7316, Ecole Centrale de Marseille : UMR7316, Centre National de la Recherche Scientifique : UMR7316
5-9 Boulevard BourdetCS 5049813205 Marseille Cedex 1 -
France
Post-Lasso and Post-Double-Lasso are becoming the most popular meth-ods for estimating average treatment e˙ects from linear regression models with many covariates. However, these methods can su˙er from substantial omitted variable bias in finite sample. We propose a new method called Post-Double-Autometrics, which is based on Autometrics, and show that this new method outperforms Post-Double-Lasso when explanatory variables are weakly correlated with the endogenous variable but correlated with the treatment variable.