Treatment effect estimation in high-dimension: An inference-based approach
Emmanuel Flachaire  1, *@  
1 : Aix-Marseille Sciences Economiques  (AMSE)
École des Hautes Études en Sciences Sociales, Aix Marseille Université, Ecole Centrale de Marseille, Centre National de la Recherche Scientifique, École des Hautes Études en Sciences Sociales : UMR7316, Aix Marseille Université : UMR7316, Ecole Centrale de Marseille : UMR7316, Centre National de la Recherche Scientifique : UMR7316
5-9 Boulevard BourdetCS 5049813205 Marseille Cedex 1 -  France
* : Corresponding author

Post-Lasso and Post-Double-Lasso are becoming the most popular meth-ods for estimating average treatment e˙ects from linear regression models with many covariates. However, these methods can su˙er from substantial omitted variable bias in finite sample. We propose a new method called Post-Double-Autometrics, which is based on Autometrics, and show that this new method outperforms Post-Double-Lasso when explanatory variables are weakly correlated with the endogenous variable but correlated with the treatment variable.


Online user: 2 Privacy
Loading...